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1 Introduction 

I don't think there's much point in bemoaning the state of the world un­

less there's some way you can think of to improve it. Otherwise, don't 

bother writing a book; go and find a tropical island and lie in the sun. 

PETER SINGER 

Experiments involving non-human animals (hereinafter referred to as animals) 

were the predominant technology in the life sciences from the 1920s to the 

1970s. Increasingly, animal-based procedures have been complemented and 

superseded by other approaches; yet, they still have an enormous reputation 

as an apparent definitive answer to many scientific and, especially, regulatory 

questions. They have been questioned first for ethical reasons: Can we justify 

making animals suffer for scientific inquiry? Simply said, people have different 

views on this question, but the general public views animal experimentation 

more and more critically. The animal research community has sought a com­

promise between those who would like to see the end to the use of animals 

sooner rather than later, and those who think animal research is indispensable. 

The societal response has included regulation and oversight of animal experi­

ments ( e.g., requiring formal justifications and permission), as well as support 

for the development of alternative methods. 

2 Progress in Legislation 

Building on the legislation of some of the more progressive Member States, 

the European Union (Eu) has twice advanced the legislative oversight of ani­

mal experimentation and the push for alternative methods. Already in 19861 

European lawmakers reasoned that harmonized animal testing legislation 
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674 HARTUNG 

was needed within the common market, both to level the playing field and 

to limit animal testing. Since then, and revised and strengthened as Directive 

2010/63/EU, the EU requires that practically available alternatives to animal 

experiments have to be used (European Parliament, 2010 ). The EU also tasked 

the European Commission and the Member States with furthering the devel­

opment and validation of alternatives. The 2010 Directive continued to expand 

the scope of the legislation and added enforcements. It also included an im­

portant reversal of the burden of proof: the legislation does not restrict the 

free use of animals in science, but it grants an exemption from the prohibition 

of animal tests upon sufficient justification (Hartung, 2010a). Noteworthy, the 

scope of Directive 2010/63/EU was extended to include the entire animal life 

cycle, from breeding to the conclusion of the experiments; and it was extended 

to late stages (last trimester) of embryonic development as well as to cephalo­

pods, such as octopus and squid. The legislation also requires the application 

of the 3Rs and encourages their further development, as well as requiring the 

systematic evaluation of projects, including prospective and, for certain ex­

periments, retrospective assessments of pain, suffering, and distress caused to 

animals. 

While these general provisions apply for basic research as well as the ap­

plied use of animals for product development and safety testing, it is quite 

remarkable that the safety testing part (i.e. toxicology) has become the pri­

mary battleground over animal experimentation and its alternatives. This area 

accounts for only about 10% of overall animal use in science (Daneshian et al., 

2015), according to statistics from the EU and elsewhere; yet, it is probably fair 

to say that go% of the work to develop alternative methods, in the sense of 

one-for-one replacement, has taken place in this field (see Stephens and Mak, 

2013) for a comprehensive look at the history of pursuing alternative methods 

in toxicology). Consequently, toxicology has a lighthouse function for other 

areas. If we can substitute for animals in the area of human safety, we can un­

doubtedly do the same in other areas. 

3 Problems with Animal Models Increasingly Acknowledged 

A key recent development is that animal experiments are being challenged on 

more than just ethical grounds (Hartung, 2017a, b ). Animal experimentation 

is resource intensive, in terms of both expense and duration (Bottini and Har­

tung, 2009 ), and we are increasingly realizing the limited predictivity of animal 

models for humans based on both the limited reproducibility of their results, 

and the differing results across animal species (Hartung, 2013; Pound et al., 

Kathrin Herrmann and Kimberley Jayne - 978-90-04-39119-2 

Downloaded from Brill.com11 /11 /2019 09:57:0BPM 

via free access 



RESEARCH AND TESTING WITHOUT ANIMALS 675 

2004; Pound and Bracken, 2014). Humans are obviously not 70kg rats (Hartung, 

2009a ). Within toxicology research, the costs have become particularly evident 

as companies start to tackle the backlog of testing of industrial chemicals un­

der the European Registration, Evaluation, Authorisation and Restriction of 

CHemicals (REACH) program (Hartung and Rovida, 2009). The comprehen­

sive assessment of a single substance amounts to several million us dollars of 

testing costs. We simply cannot afford to test tens of thousands of substances 

using the usual methods, and we also do not even have the laboratory capac­

ities to do so. Often overlooked, we also need about 20kg of a substance to 

run a comprehensive toxicity profile; for novel and costly substances such an 

amount is often impractical to synthesize. 

The most important issue-the limited predictivity of animal experimen­

tation-was underscored by recent findings that the high failure rate of new 

substances in the pharmaceutical industry is based, at least in part, on the mis­

leading findings of the animal models used during the course of development 

(Hartung, 2013). Two major assessments by pharmaceutical companies, one 

by Amgen and one by Bayer, showed that animal-based research studies were 

reproducible in only 11% of 53 projects (Begley and Ellis, 2012) and in about 

20%-25°/o of 67 studies (Prinz, Schlange and Asadullah, 2011). This and similar 

findings have fueled a more general discussion about the reproducibility crisis 

in science (Baker, 2016). It is important to note that this issue is simply one 

of replicating the findings of earlier animal studies in later animal studies of 

similar design; this is quite apart from the issue of extrapolating such results 

to humans. The reproducibility crisis increasingly calls into question whether 

animal studies should serve as the ultimate gold standard of scientific work 

in the life sciences. Indeed, more than 95% of substances that show promise 

in animal experiments (Arrowsmith, 2011a, b, 2012) fail in later stages of drug 

development when assessed in human trials (Hartung, 2013). To be sure, the 

drug development process continues to deliver new entities but at costs in the 

billion us dollar range (DiMasi, Grabowski and Hansen, 2016), making it more 

and more difficult to sustain this business model. 

4 Regulatory Testing as a Role Model for Moving Away from Animal 

Experimentation as a Whole 

A scientific discussion challenging animal experimentation would be fruit­

less if there were no alternatives. When acknowledging the shortcomings 

of animal experimentation, many animal researchers will essentially argue 

that it is better to have something imperfect than nothing at all. But are they 
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just imperfect, or are they downright misleading? Nobody knows how many 

promising drugs have never made it to human trials because the animal tests 

wrongly sorted them out as inefficient or harmful. It is somewhat frightening 

to realize that aspirin would probably not make it to the market today because 

it fails a number of animal-based safety tests (Hartung, 200gb ). 

As stated above, formal replacement of animal-based procedures by alter­

natives has been pioneered mainly in the field of regulatory testing, i.e. the 

toxicological assessment of drugs, medical devices, chemicals, pesticides, 

cosmetics, and other consumer products prior to marketing, as well as the 

batch-release testing for vaccines. Why the focus here on alternatives to ani­

mal-based tests? Governments tend to fund the development of alternatives to 

the animal procedures they prescribe ( safety sciences); and legislation, such as 

the European cosmetics test ban (Hartung, 2008) and REACH (Hartung, 2010b ), 

have spurred these developments. Hence, regulatory toxicology has the poten­

tial to be an important driver for animal replacement research more generally. 

Noteworthy, the cosmetic ban was the consequence of public pressure voiced 

by animal protection groups to policy makers, not a consequence of scientific 

progress or perceived regulatory needs. Much of the new science came after 

the legislative ban took effect; and after the ban was embraced by industry and 

regulators, first in the EU and then elsewhere. 

Regulatory testing has formed a bit of an island because, until recently, 

it has been outside of the normal competition of ideas, failing to keep pace 

with technological advances. In contrast, there is pressure to employ the latest 

technologies in drug development. After patenting a lead compound, there 

is a race to bring the drug to the market, as a single day of delay costs the 

company, on average, us$1 million to recuperate the almost us$3 billion of 

average development costs (DiMasi et al., 2016). This means that drug deve­

lopment companies readily explore and apply technologies that hasten deci­

sion making and may bring a competitive advantage. It has been suggested 

that our knowledge in these areas doubles every seven years. In comparison, 

many approaches in regulatory science are decades old: acute and repeated­

dose testing originate from the 1920s, skin and eye irritation from the 1940s, 

and reproductive toxicity testing from the 1960s. This unusually static situa­

tion has inadvertently allowed the long-term, systematic targeting of these 

assays in recent decades. In other areas of biomedical research, development 

and validation projects of 10-20 years (not uncommon in the testing arena) 

would be quite pointless, because the technology changes so much over time 

that the validated test becomes obsolete. So, to some extent the development 

of alternatives for regulatory animal tests has become the sparring partner 

for other areas of research, as it elucidates general needs for addressing the 
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definition and reporting of experiments, their combined use, and their rel­

evance, quality assurance, and validation. This also helps to transform, more 

generally, the mindset of researchers, creating awareness of the availability 

and the need of alternatives. 

Education plays a key role here. By training the next generation of scientists 

with an openness to the new technologies and with a critical eye towards the 

use of animals-certainly not hailing them as the ultimate tool of generating 

knowledge-the basis for a balanced use of different tools is set (Daneshi­

an et al., 2011; Hartung, Blaauboer and Leist, 2009). Internet-based teaching 

and training is facilitating this sea change. The emerging professorships for 

alternative methods in Konstanz, and other places in Germany; Baltimore; 

Utrecht; and elsewhere, and their collaboration with each other, represent an 

enormous opportunity. An important element is the parallel replacement of 

animals in the teaching of all areas of the life sciences. Nowadays, alternative 

teaching models, computer simulations, and movies can effectively substitute 

for repeatedly carrying out the same demonstration of an animal test. The 

non-animal approaches help to underscore a mindset of avoiding animal use. 

But it is not only about the next generation. Especially important is the con­

tinuous education of regulators, which at the moment often form a bottle­

neck for the broader use of new approaches. Such continuing education plays 

an important role in accelerating change across all areas of animal-based 

research. 

The obvious principal alternatives to animal use are in vitro and in silico 

approaches, i.e. methods based on cell culture or on computer modeling. Al­

though not without their own scientific limitations, these approaches can at 

least be focused on human biology, and they are typically cheaper and faster 

than animal tests. We also have increasingly technical solutions (Marx et al., 

2016) and quality assurance tools (Coecke et al., 2005) to overcome the limita­

tions of the early cell-culture technologies. Stem-cell technologies now make 

high-quality human cells more broadly available, and bioengineering allows the 

reproduction of organ architecture and function in cell culture. Such advanced 

organotypic cell models are now often called microphysiological systems. They 

promise to provide all life sciences, including safety sciences (Andersen et al., 

2014; Marx et al., 2016; Smirnova et al., 2018), with more meaningful functional 

organ models, overcoming many of the shortcomings of traditional cell culture 

(Pamies and Hartung, 2017) and, thereby, making them more competitive to 

animal experimentation. Our own development of human mini-brains from 

stem cells (Pamies et al., 2017) may serve as an example for the many models 

mushrooming as a consequence of stem-cell technologies and advances in 

bioengineering. 
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5 Validating Animal Models and Their Alternatives 

The ultimate quality control and the basis for replacing an animal method is 

formal validation of alternative methods (Leist et al., 2012 ). This started with 

the creation of the first validation body, the European Centre for the Validation 

of Alternative Methods (ECVAM) in 1991 (which the author headed between 

2002 and 2008). Since then, validation has been internationally harmonized 

and also required for new animal test methods by the Organisation for Eco­

nomic Co-operation and Development ( OECD) (2005). The validation process 

was developed for regulatory tests (mainly originating from drug safety testing, 

but with a focus on their application to cosmetics and industrial chemicals), 

where safety is at stake, and is not generally considered necessary for other ar­

eas of the life sciences. However, the elements and principles of validation are 

very much advisable to any type of experimental work ( i.e., the clear definition 

of the method-its purpose, execution, and applications-and the assess­

ment of its reproducibility and relevance) and are vital to moving away from 

animal experiments. Successful examples of validation include testing for skin 

and eye corrosion and irritation, phototoxicity, skin sensitization, pyrogenicity, 

and batch testing for several vaccines in international test guidelines from the 

OECD and different pharmacopoeias. The reader is referred to the websites 

of validation bodies, such as ECVAM and its us counterpart, the Interagency 

Coordinating Committee on the Validation of Alternative Methods (ICCVAM); 

and the independent website, AltTox.org, which keep track of the status of the 

validation and acceptance of testing methods. 

Validation has taught us, first of all, that clear definitions of a test and its 

purpose are needed. It is astonishing to see how often these are not clearly 

stated in scientific literature and the whole field of animal research. Second, 

validation formally addresses reproducibility. While requiring ring trials of a 

new method is certainly going too far, a more formal reporting on reproduc­

ibility ( starting with a clear distinction between what was done repeatedly, and 

what was done in parallel technical replicates only) is an important element of 

addressing the prevailing reproducibility crisis. The most overlooked element 

of validation within the life sciences is to formally establish the relevance of a 

test. This might sound odd to a lay audience, but in science we often produce 

results in a model system and then uncritically translate them to the system 

being modeled ( usually humans). 

Often lacking in our scientific papers are formal assessments of the scientif­

ic basis of the new methods ( are the relevant mechanisms reflected?) and their 

interspecies predictivity, as well as a demonstration that the model gives mean­

ingful results with well-known reference compounds. The "cherry-picking" of 
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the literature backing our results creates enormous bias. A change in scien­

tific paradigm is needed towards evidence-based approaches. Here too, within 

the preclinical sciences, it is toxicology and the search for alternatives that are 

spearheading relevant developments, i.e., the creation of evidence-based toxi­

cology (Hoffmann and Hartung, 2006), with systematic reviews of the litera­

ture (Stephens et al., 2016). 

6 Alternative Technologies in Toxicology as a Roadmap for Basic 

and Applied Research 

Much of what has been written above is centered on in vitro methods. In silico 

methods have undergone similar developments making them a central tool 

in the life sciences and regulatory assessments (Ekins, 2014). Ever-increasing 

computer-power allows more and more applications of these methods. How­

ever, their limitations so far prohibit regulatory use on a large scale (Hartung 

and Hoffmann, 2009 ); this seems to result from the fact that most approaches 

have looked for an exact formula to describe parts of the chemical universe 

from the structures of the chemicals. This has proven to be difficult owing to 

the quality problems of the animal input data and the quite small datasets gen­

erally available. More recently, however, in silico methods have gained ground, 

especially the very pragmatic area of data-gap filling by read-across. Read­

across is based on the principle that similar chemicals have similar toxicologi­

cal effects; i.e., it suggests taking over the results from similar chemicals with 

the respective reasoning about similar chemistry, chemicophysical properties, 

uptake, metabolism, and biological effect. The use of read-across flourished 

in the context of REACH (Patlewicz et al., 2014), but the extent of its applica­

bility and how to conduct and report it are under debate. This has prompted 

the development of Good Read-Across Practices (Ball et al., 2016) and ideas for 

a more automated read-across (Hartung, 2016). The latter development also 

makes use of the emerging large toxicological databases (Luechtefeld et al., 

2016). These machine-learning approaches are agnostic to the biological effect 

studied and are similarly useful in drug discovery. Other in silico approaches, 

which are mushrooming, include modeling from receptor binding to cells, or­

gans, and organisms. In short, the informatics revolution fuels the replacement 

of animal tests with increasing pace (Ekins, 2014). 

Increasingly, in vitro and in silico methods are combined, forming integrated 

testing strategies, acknowledging that one method alone does not satisfy all 

information needs (Hartung et al., 2013; Rovida et al., 2015a). While the idea 

is rather simple, the systematic composition, optimization, and validation of 
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such strategies are still in their infancy. Again, the safety sciences are spear­

heading the concept, also combining it with a more mechanistic approach 

(Tollefsen et al., 2014); but the needs and opportunities are not very different 

for other areas of the life sciences. Mechanistic toxicology has been boosted 

by the recent cataloging of mechanisms as adverse outcome pathways (AOP) 

(Leist et al., 2017 ), which have been systematically developed under the um­

brella of the OECD and which help the discussion and design of integrated 

testing strategies, among others. Similarly, modem drug development inte­

grates different testing tools, though this could often benefit from a more for­

mal integration of tests. It is interesting what can be learned from the mass 

testing of environmental chemicals. Simply said, for tests, 1+1 is more than 2 

when well integrated. 

In the life sciences, the increases in molecular and mechanistic understand­

ing-as exemplified by the mapping of the human genome-have given rise 

to mechanistic models throughout experimental medicine (Langley et al., 

2015). The new approaches do not simply replace or complement animal tests; 

they are enabling technologies that outperform the animal-based procedures 

as soon as sufficient mechanistic understanding shows their physiological 

relevance. The increasing use of non-animal methods corresponds with this 

stronger mechanistic emphasis of research: biochemistry and molecular biol­

ogy have dramatically changed how we understand physiology and disease. 

It is very difficult to identify a mechanism leading to disease in the whole ani­

mal organism, and it is very difficult to test selectively for a certain mechanism 

employed by a test substance using a complex animal model. An understand­

ing of pathways increasingly allows the modeling of (patho-) physiology as 

a systems biology (systems toxicology) approach (Hartung et al., 2012, 2017, 

Smimova et al., 2018). The scientific progress that is demanding more tailored 

experimental systems has been automatically making animal testing superflu­

ous to needs (Rovida et al., 2015b ). Figure 28.1 illustrates these developments. 

7 Barriers to Non-animal Methods 

The major obstacle for the development of new non-animal models is the pre­

vailing over-reliance on the value of animal-based procedures as an informa­

tion source in the life sciences. As long as researchers believe that they cannot 

produce the high-level publications needed to enhance their career without 

a new gene knock-out mouse, many researchers will choose animal experi­

ments. A transparent and objective assessment of animal research's shortcom­

ings is, therefore, key for opening the scientific community to change. The 

reproducibility crisis noted in the life sciences is, therefore, a godsend for those 
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Early Alternatives 

Cell Culture 
( one cell type, 
few parameters) 

Structure I Activity­
Relationships 

(Correlations) 

Today 

O,yano-typic 
Cell Culrure 

(Coculture, Organ function, 
often Perfusion) 

Cell Culture + Omics 
or Image Analysis 

(high-content) 

Automated Cell 
Culture 

(high-throughput 
Screening) 

Integrated 
Test Strategi.es 

(combined tests) 

Modeling 
(Receptor binding, 
Virtual Organs, Kinetics 

Future 

Human-on-chip 
(Multi-Organ Models 
With Micro fluidics) 

Toxicity Mechanisms 

(" Adverse Outcome Pathways", 
"Human Toxome" 

Systems Toxico/,ogy 
(''Virtual Patient") 

FIGURE 28 . 1  The technological developments in alternative methods in toxicology 

(Busquet and Hartung, 2017; reproduced with permission). Technologies 

listed as today refer to the more broadly available new technologies, while 

those only emerging are listed as future. 

who want such a discussion about the shortcomings and misdirection of ani­

mal tests and models. 

For decades, our desire to study the complexity of the human organism 

and its diseases seemed feasible only through using animals. Increasingly, 

however, very different complex systems are now used. These new approach­

es challenge the value of costly and time-consuming animal models and 

erode the justification for causing animal suffering. In vitro and in silico tools 

are cheaper and faster and, thus, can usually be carried out more readily and 

with greater ease of quality control. With such quality control, sometimes 

supported by validation, they represent robust methods for data genera­

tion. They are simplistic and partial, i.e. only reflecting a small fraction of 

(patho-) physiology. However, this is overcome by two principal approaches: 

reproducing complexity in the models ( e.g., [multi-] organs on a chip); and 

combining pieces of information in integrated testing strategies or model­

ing ( e.g., systems biology). Ultimately, all alternative approaches come with 

limitations too; but compared to animal models, these limitations can be 

surmounted by combining these new advanced animal-free models. With 

the ongoing improvements of these technologies and their ( combined) use, 
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we will be able to rely less and less on the evidently unsound animal com­

ponent in this mix. 

8 Concluding Thoughts 

Many developments summarized here hint at an upcoming scientific revolu­

tion, changing the paradigm and predominance of animal experimentation in 

the life sciences. In his influential book, The Structure of Scientifi,c Revolutions 

(1962), Thomas Samuel Kuhn (1922-1996) laid out some principles that nurture 

this expectation (Hartung, 2008). Our current belief system is being shattered 

by, among other things, the reproducibility crisis. Kuhn (1962) remarked that 

"normal science [ ... ] often suppresses fundamental novelties because they are 

necessarily subversive of its basic commitments" (p. 5); a good description of 

how alternatives have been perceived by many in the scientific establishment. 

The revolution takes place when "the tradition-shattering complements to the 

tradition-bound activity of normal science" (p. 6) hit. This is exactly what we 

observe with accelerated technological opportunities to transition into mech­

anistic, cellular, and even molecular understanding. The old (animal) model 

simply does not fully meet the needs of scientific and economic progress; it 

fails in cost, speed, level of detail of understanding, and human relevance. On 

top of this, animal experimentation lacks acceptance by an ethically evolving 

society. So let us embrace the revolution. 
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